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Abstract: Enantiomerically pure hydroxy thiol (S)-(+)-6, amino thiol (S)-(+)-12,
and N,N-dimethylamino thiol (§)-(—)-16 have been synthesized from BINOL (8)-(-)-
1 and the amino alcohol (§)-(—)-7, respectively, via the Newman—Kwart rearrangement
of the corresponding thiocarbamoyl derivatives (S)-(—)-2, (5)-(—)-10, and (S)-(—)-14.
Configurational stability of the binaphthyl unit has been observed. © 1997 Elsevier
Science Ltd. All rights reserved.

Introduction

2,2-Disubstituted 1,1’-binaphthyls with identical groups in positions 2 and 2’, such as BINOL
1, BINAP, and their congeners, are established ligands in asymmetric catalysis.l By contrast, their
analogues with non-identical substituents in these positions are rare, Hayashi’s MOP (with OMe and
PPh; groups)? and our amino alcohol 7 (NOBIN)3-3 being among the few examples reported to date.

Whereas symmetrically disubstituted binaphthyls are readily available via the oxidative coupling of
2-naphthol as a strategic step, -3 their non-symmetrical counterparts are more difficult to synthesize
since the procedure usually requires selective manipulation of one of the two identical groups (e.g. in
1).26 One possible solution to this problem is the selective cross-coupling of two different naphthalene
derivatives.3*7 We have demonstrated that this approach is particularly successful in the synthesis of
NOBIN 7 and related binaphthyls.3'4 However, its scope is limited by the stringent electronic demands
of the reacting partners* and by the requirement that the reactants be capable of covalent bonding
to the oxidizing agent (e.g., Cu?*).3:7¢ Another limiting factor is the nature of the functional groups.
Thus, for instance, the thio-analogue of BINOL, i.e., the dithiol 4, cannot be prepared by the oxidative
coupling of 2-thionaphthol since, in this instance, S-arylation dominates over the C-1 arylation.?

While this work was in progress, the dithiol 4 was prepared by De Lucchi® and Smith!® from
BINOL 1 via the Newman—Kwart!! rearrangement of the thiocarbamate 2 followed by hydrolysis
of the resulting carbamate 3. In spite of the relatively severe conditions of the Newman-Kwart
rearrangement (>250°C), no racemization has been detected when the enantiomerically pure 1 was
utilized as the starting material,® which is in full agreement with our own, unpublished experience.!2
Racemic hydroxy thiol (+)-6 has also been synthesized by the same group via a partial rearrangement
of (+)-2 followed by hydrolysis (2— 5— 6).13 A recent report by Woodward! on the highly efficient
synthesis of ()-6 via an elegant, selective functionalization of (+)-1, prompted us to disclose our
results. Herein, we report on the syntheses of enantiomerically pure hydroxy thiol (S)-(+)-6, amino
thiol (S)-(+)-12, and N,N-dimethylamino thiol (5)-(—)-16.

* Corresponding author. Email: pk10@leicester.ac.uk
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Results and discussion

The bis-thiocarbamate (S)-(—)-2, obtained from the enantiomerically pure BINOL (S)-(-)-1 by
treatment of its sodium salt with Me;NCSCl in DMF, was subjected to the Newman—Kwart
rearrangement. Whereas at >260°C the reaction mainly furnished the doubly rearranged product
(5)-(—)-3, under controlled conditions (240°C for 60 min), the mono-rearranged O,S-derivative (S)-
(—)-5 was obtained as the major product (40%), accompanied by the bis-rearranged S,S-isomer (S)-
(—)-3 (25%) and unreacted starting material (10%), which were separated by flash chromatography.
Although not being an ideal preparation, this experiment demonstrated that the O,S-derivative 5 can
be prepared without loss of enantiomeric purity,'> which is consistent with the experimental value
of >35 kcal mol~! for the barrier of racemization in 2,2’-disubstituted binaphthyls.!® Moreover, at
the higher temperature, dinaphtho[2,1-b;1 ',2'-d]thiophe:ne:9'10 was detected as the major contaminant;
by contrast, its formation was almost entirely suppressed at 240°C.!7 Hydrolysis of pure 5 gave the
enantiomerically pure hydroxy thiol (5)-(+)-6.

The amino thiol 12 could not be prepared in the same way since the attempted conversion of the
amino alcohol 7 into the corresponding N,0-bis-thiocarbamoy! derivative led to a complex, intractable
mixture of products. Therefore, (S)-(—)-7 (>99% ee)!® was first protected via N-acetylation and the
resulting amide (S)-(—)-8 (67%) was then converted into the thiocarbamate (S)-(—)-10 (94%). The
Newman—Kwart rearrangement of the latter compound, which was carried out at 240°C for 90 min,
turned out to be much less successful than that in the O,0-series; from the resulting mixture of products
the desired N,S-derivative (S)-(—)-11 (99% ee) was isolated in only 20% yield.19 Hydrazinolysis of
the latter compound produced the pure amino thiol (S)-(+)-12 (89%), which was also characterized
as its hydrobromide (97.4% ee).

The N,N-dimethylamino alcohol (S)-(—)-13, required for the synthesis of N,N-dimethylamino thiol
16, was prepared via a modified? Eschweiler—Clarke mcthylation21 of the amino alcohol (S)-(—)-7
in 84% yield (>99% ee).2? The thiocarbamate (S)-(—)-14 (98.2% ee), obtained in 95% yield from
the sodium salt of (S)-(—)-13 on reaction with Me;NCSCI, was then heated at 240°C to afford (S)-
(—)-15. In this case, the Newman—Kwart rearrangement proved much more successful than that in the
instance of 11, giving the desired product 15 in 78% yield, with very little racemization (vide infra).
Cyclic thiocarbamate (S)-(+)-17 has been identified as a byproduct (8%; 52.8% ee)?? in this instance;
a control experiment, carried out on a small scale, demonstrated that 17 arises from 15 by prolonged
heating, presumably via an initial attack by the NMe; on the C=0 group. Hydrazinolysis of (S)-(—)-



Axially chiral 1,1"-binaphthyls 539

15 led to the N,N-dimethylamino thiol (S)-(~)-16 (85%; 92.0% ee) which, on crystallization, afforded
pure material of 96.2% ee.
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Conclusion

We have demonstrated that the Newman—Kwart rearrangement can be employed as a crucial step
for the synthesis of nonsymmetrically substituted 1,1’-binaphthyls with the thiol group as one of the
substituents. Enantiomeric purity of the starting diol 1 and amino alcohol 7 is preserved in the resulting
hydroxy thiol 6 and amino thiols 12 and 16, respectively, in spite of the seemingly drastic condition of
the rearrangement. We currently work on the application of some of the chiral ligands thus obtained
in asymmetric catalysis.

Experimental section
Materials and equipment

Optical rotations were measured on Pye Unicam 143A polarimeter with an error of <+0.5. 'H
NMR spectra were recorded on Varian XL-400 (FT mode), Varian Gemini 300 (300 MHz), or Bruker
ARX.-250 (250 MHz) instruments for CDCl3 solutions at 25°C with TMS as internal reference. The
IR spectra were measured in chloroform on a Perkin-Elmer 490 instrument. The high resolution mass
spectra were measured on a Jeol JMS D-100 double focusing spectrometer (70 eV, 3 kV) using direct
inlet and the lowest temperature enabling evaporation; the accuracy was <5 ppm. Chromatography on
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Chiralpak AD, Chiralcel OD-H, Chiralcel OF, Chiralcel OJ, and Chiralcel OS was used to determine
ee (with UV detection at 254 nm). In each case the separability of enantiomers was tested with the
corresponding racemate and the optimal conditions were chosen for the analysis of the actual samples.
In all cases the (S)-enantiomer was the first to be eluted from the column except for 14 and 15. All the
solvents used for the reactions or for crystallization experiments were degassed by purging with argon
(20 min; 60 mL Ar/min). Light petroleum refers to the fraction boiling in the range 40-60°C. Yields
are given in mg of isolated product showing one spot on a chromatographic plate and no impurities
detectable in the NMR spectra.

(S)-(—)-2,2"-Di[(N,N-dimethylthiocarbamoyl)oxy]-1,1’-binaphthyl (S)-(—)-2

Prepared from (S)-(—)-1 (99% ee) in the same way as reportedg'13 in 84% yield: mp 158-160°C
(EtOH), literature!3 gives 206-208°C (petroleum ether—CHClp);2425 [at]p —154 (¢ 0.1; CHCI3) or
—111° (¢ 1.0; THF), literature!3 gives [&t]p +103.5 (¢ 1; THF) for the (R)-enantiomer; chromatography
on a Chiralpak AD column with a hexane—ethanol mixture (9:1) at rt showed 97.0% ece.

(S)-(—)-2-[(N,N-Dimethylthiocarbamoyl)oxy]-2'-[(N,N-dimethylcarbamoyl)mercapto]-1,1’-
binaphthyl (S)-(-)-5

Bis-thiocarbamate (S)-(—)-2 (12.00 g; 26 mmol; 97% ee) was heated under argon in a sealed tube
at 240+ 1°C for 60 min. The tube was then cooled and the content was chromatographed on silica
gel (600 g) with a petroleum ether—ethyl acetate mixture (4:1) to give dinaphthothiophene® (371 mg;
5%), unreacted 2 (1.20 g; 10%), the O,S-product 5 (4.80 g; 40%) and the S,5'-product’ 3 (3.01 g;
25%; 97% ee according to chromatography on a Chiralcel OD-H column). Crystallization of the
corresponding fraction from methanol gave the pure (S)-(—)-5: mp 183-184°C; [at]p —144 (c 0.5;
CHCI3); chromatography on a Chiralcel OD-H column with a hexane—ethanol mixture (9:1) at rt
showed >99% ee; 'H NMR & 1.57 (s, 3 H, OCSNMe;) and 1.81 (s, 3 H, OCSNMe3), 2.89 (s, 3 H,
SCONMey), 2.96 (s, 3 H, SCONMe3), 6.89 (d, /=8.5 Hz, 1 H, arom), 7.10 (d, /=8.8 Hz, 1 H, arom),
7.16-7.30 (m, 1 H, arom), 7.36-7.42 (m, 1 H, arom), 7.49-7.56 (m, 1 H, arom), 7.74 (d, J=8.5 Hz, |
H, arom), 7.88-8.08 (m, 5 H, arom), 8.40 (d, J=8.8 Hz, 1 H, arom); 13C NMR § 23.99 (q), 36.85 (q),
37.18 (q), 122.01 (d), 124.81 (d), 124.84 (s), 125.31 (d), 126.43 (d), 126.66 (d), 127.25 (d), 127.52
(d), 127.95 (2xd), 128.07 (s), 128.64 (d), 129.52 (d), 130.63 (s), 133.13 (s), 133.16 (s), 133.35 (d),
134.07 (s), 134.99 (s), 140.73 (s), 168.59 (s), 169.21 (s); IR v 1221 and 1535 (Ar—O-CS), 1658 (C=0)
cm™}; HRMS m/z (%) 460 (M**, Co6H24N202S2, 4), 388 (1), 356 (1), 299 (2), 284 (48), 268 (2),
239 (3), 88 (79), 72 (100). Anal. Calcd for C26H24N20282: C, 67.78; H, 5.25; N, 6.08; S, 13.92.
Found: C, 67.83; H, 5.18; N, 6.05; S, 13.83.

(S)-(+)-2-Hydroxy-2'-mercapto-1,1’-binaphthyl (S)-(+)-6

To the refluxing solution of the O,S-derivative (S)-(—)-5 (920 mg; 2 mmol; >99% ee) in anhydrous
methanol (80 mL), purged with argon, was slowly added a 10% solution of KOH in methanol (1 mL),
and the mixture was refluxed under argon for 5 h. The mixture was then cooled to rt and poured to
a degassed, 5% aqueous HCL. The resulting precipitate was filtered off and dried in vacuo to afford
amorphous (S)-(+)-6 (380 mg; 63%):26 [&]p +5.7 (¢ 0.9; EtOH);2728 IR v 2568 (ArSH), 3536 (ArOH)
cm~1; 'H NMR (400 MHz) § 3.40 (brs, 1 H, SH), 4.91 (brs, 1 H, OH), 7.02-8.00 (m, 12 H, arom);
I3C NMR 8 116.55 (s), 117.75 (d), 123.31 (d), 124.20 (d), 125.01 (d), 125.63 (d), 126.62 (s), 126.94
(d), 127.16 (d), 127.63 (d), 128.28 (d), 128.29 (d), 129.32 (s), 129.65 (d), 130.76 (d), 131.84 (s),
132.69 (s), 133.65 (s), 133.66 (s), 151.04 (s); HRMS m/z (%) 302 (M**, Co0H) 408, 100), 282 (7),
273 (14), 269 (C20H)30, 52), 268 (22), 251 (12), 241 (12), 239 (23), 141 (13), 134.5 (14), 134 (17),
128 (17), 125.5 (16), 125 (15), 119.5 (19).

(S)-(—)-2-(Acetamido)-2'-hydroxy-1,1'-binaphthy! (S)-(— )-8
To the solution of (S5)-(—)-7 (2.85 g; 10 mmol; >99% ee) in dry pyridine (40 mL) was slowly added
acetyl chloride (0.8 mL; 10.5 mmol) at 0°C and the mixture was then kept at rt for 8 h. The mixture was
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poured onto ice and water and extracted with chloroform. The extract was successively washed with
water, 5% aqueous HCI, water, sat. aqueous NaHCO3, and water and dried with Na; SO4. The solvent
was evaporated and the residue was chromatographed on silica gel (250 g) with a toluene—acetone
mixture (8:1) to give the diacetate 9 (610 mg; 16%) followed by (S)-(—)-8 (2.20 g; 67%): mp
208-208.5°C (EtOH); [a]p —79 (c 0.5; CHCl3); chromatography on a Chiralpak AD column with a
hexane—ethanol mixture (1:1) at 40°C showed >99.0% ¢e; TH NMR 8 1.75 (s, 3 H, CH3CO), 5.66 (bs,
1 H, OH), 6.95 (bs, 1 H, NH), 6.99 (d, /=8.5 Hz, 1 H, arom), 7.14-7.45 (m, 6 H, arom), 7.85-8.00
(m, 4 H, arom), 8.46 (d, J=8.8 Hz, 1 H, arom); 13C NMR § 24.33 (g), 112.99 (s), 118.04 (d), 118.74
(s), 121.27 (d), 123.87 (d), 124.10 (d), 125.30 (d), 125.43 (d), 127.10 (d), 127.32 (d), 128.17 (d),
128.32 (d), 129.32 (d), 129.16 (s), 129.91 (d), 130.99 (d), 131.28 (s), 132.72 (s), 133.07 (s), 135.48
(s), 152.03 (s), 169.02 (s); IR v 1690 (C=0), 3407 (NH), 3530 (OH) cm~!; HRMS m/z (%) 327 (M**,
C22H|7NO3, 48), 285 (C20H | 5NO, 100), 284 (11), 268 (32), 267 (21), 256 (12), 254 (10), 239 (15),
43 (14). Anal. Calcd for C2pH17NO;: C, 80.73; H, 5.23; N, 4.28. Found: C, 80.72; H, 5.15; N, 4.26.
(S)-(—)-2-(Acetamido)-2'-acetoxy-1,1’-binaphthyl (S)-(—)-9

Obtained along with 8 as a less polar byproduct and isolated via chromatography (610 mg; 16%):
mp 162-163°C (MeOH); [«]p —88 (¢ 1; CHCI3); 'H NMR (80 MHz) § 1.78 (s, 3 H), 1.83 (s, 3 H),
7.00-8.45 (m, 12 H, arom); IR v 1686 and 1750 (C=0), 3398 (NH) cm~!; HRMS m/z (%) 369 (M**,
Ca4H19NO3, 27), 327 (47), 286 (21), 285 (100), 268 (21), 267 (18), 256 (9), 239 (10), 43 (15). Anal.
Calcd for C4H19NO3: C, 78.03; H, 5.18; N, 3.79. Found: C, 77.63; H, 5.12; N, 3.82.
(S)-(—)-2-(Acetamido)-2'-[(N,N-dimethylthiocarbamoyl)oxy]-1,1"-binaphthyl (S)-(—)-10

To the solution of (§)-(—)-8 (1.10 g; 3.40 mmol; >99% ee) in dry DMF (50 mL) was added sodium
hydride (170 mg; 3.9 mmol; obtained from a 55%-oil suspension by washing with petroleum ether).
When the evolution of hydrogen ceased, a solution of N,N-dimethylthiocarbamoy] chloride (450 mg;
3.6 mmol) in DMF (20 mL) was added. The mixture was then heated at 40°C for 2 h. The mixture was
then cooled and poured into a 2% aqueous KOH (400 mL) and the resulting precipitate was filtered
off and dried on air. The crude product was dissolved in chloroform and purified by filtration through
a short column of silica gel (20 g) to furnish (S)-(—)-10 (1.31 g; 94%), chromatography of which on
a Chiralpak AD column with a hexane—ethanol mixture (1:1) at 40°C showed 94.8% ee: mp 66—68°C
(n-heptane); [&}p —20 (¢ 0.5; CHCl3); chromatography of this sample on a Chiralpak AD column
showed 299% ee; 'H NMR & 1.76 (s, 3 H, CH3CO), 2.53 and 3.18 (2xs, 6 H, Me2N), 7.87 (bs, 1
H, NH), 7.26, 7.32, 7.34, and 7.49 (4xddd, J=8.3, 6.8, and 1.4 Hz, 4 H, 6-H, 6'-H, 7-H, 7’-H), 7.43,
7.96, 8.06, and 8.28 (4xd, J=8.7 Hz, 4 H, 3-H, 3'-H, 4-H, 4'-H), 7.17, 7.23, 7.88, 7.96 (4xbrd, J =
8.3 Hz, 4 H, 5-H, 5’-H, 8-H, 8'-H); '3C NMR & 24.17 (q), 37.92 (q), 42.98 (q), 121.41 (s), 122.69
(d), 122.87 (d), 125.00 (d), 125.43 (d), 125.55 (d), 124.97 (s), 126.25 (d), 126.34 (d), 127.40 (d),
127.92 (d), 128.14 (d), 128.90 (d), 129.86 (d), 130.90 (s), 131.97 (s), 132.91 (s), 132.97 (s), 135.08
(s), 150.40 (s), 165.99 (s), 168.77 (s); IR v 1222 and 1502 (OCSNMey), 1681 (C=0), 3305 (NH)
cm™!; HRMS miz (%) 414 (M**, C25H22N2 0,8, 23), 325 (9), 284 (36), 268 (6), 267 (7), 88 (100),
72 (32), 43 (7). Anal. Calcd for C25H22N205S: C, 72.44; H, 5.35; N, 6.76; S, 7.74. Found: C, 72.11;
H, 5.01; N, 6.59; S, 7.48.
(S)-(—)-2-(Acetamido)-2'-[(N,N-dimethylcarbamoyl)mercapto]-1,1'-binaphthyl (S)-(—)-11

The thiocarbamate (S)-(~)-10 (1.31 g; 3.20 mmol; >=99% ee) was heated under argon in a sealed
tube at 240+ 1°C for 90 min. The tube was then cooled and the content was chromatographed on silica
gel (60 g) with a toluene—acetone mixture (8:1) to give amorphous (§)-(—)-11 (250 mg; 20%): {®]p
—190 (c 0.5; CHCl3); chromatography on a Chiralcel OD-H column with a hexane—ethanol mixture
(95:5) at 25°C showed >99% ee; 'H NMR & 1.81 (s, 3 H, CH3CQ), 2.89 (s, 3 H, Me3N), 2.96 (s,
3 H, Me)N), 6.89 (d, /=8.2 Hz, 1 H, arom), 7.10 (d, /=8.2 Hz, 1 H, arom), 7.15~7.29 (m, 1 H,
arom), 7.36-7.42 (m, 1 H, arom), 7.49-7.55 (m, 1 H, arom), 7.74 (d, J=8.5 Hz, 1 H, arom), 7.88-8.08
(m, 5 H, arom), 8.40 (d, J=9.1 Hz, 1 H, arom); 13C NMR & 23.98 (q), 36.85 (q), 37.18 (q), 122.01
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(d), 124.82 (d), 124.86 (s), 125.31 (d), 126.43 (d), 126.66 (d), 127.25 (d), 127.51 (d), 127.96 (2xd),
128.07 (s), 128.64 (d), 129.51 (d), 130.63 (s), 133.10 (s), 133.16 (s), 133.34 (d), 134.07 (s), 134.97
(s), 140.73 (s), 168.60 (s), 169.24 (s); IR v 1590 and 1605 (arom), 1655 (SNC=0), 1692 (NC=0),
3319 (NH) cm™}; HRMS m/z (%) 414 (M**, C25H22N20,8, 14), 325 (7), 300 (4), 284 (27), 283 (4),
267 (5), 72 (100), 43 (9). Anal. Calcd for C25H22N20,S: C,72.44; H, 5.35; N, 6.76; S, 7.74. Found:
C, 72.64; H, 5.33; N, 6.62; S, 7.43.
(S)-(+)-2-Amino-2"-mercapto-1,1’-binaphthyl (S)-(+)-12

To a solution of (S)-(—)-11 (200 mg; 0.48 mmol; =99% ee) in degassed 1-pentanol (6 mL) was
added, strictly under an argon atmosphere, 80% hydrazine hydrate (4 mL) and the mixture was
refluxed under argon for 5 h. The mixture was then cooled and evaporated to dryness. The residue was
chromatographed on silica gel (20 g) with toluene as eluent to afford (S)-(+)-12 (130 mg; 89%): mp
127-131°C (dec; EtOH); [et]p +19 (¢ 0.1 CHCI3); IR v 1618 (C=C arom), 2558 (SH), 3367 and 3471
(NHz) cm~!; 'H NMR (250 MHz) § 3.42 (s, 1 H, SH), 3.59 (bs, 2 H, NH»), 6.91 (d, 1 H, J=7.9 Hz,
arom), 7.08-7.28 (m, 5 H, arom), 7.35~7.41 (m, 1 H, arom), 7.55 (d, 1 H, /=8.8 Hz, arom), 7.76-7.87
(m, 4 H, arom); 13C NMR & 114.72 (s), 118.23 (d), 122.58 (d), 123.59 (d), 125.20 (d), 125.31 (d),
126.88 (d), 127.02 (d), 127.23 (d), 128.16 (d), 128.20 (d), 128.26 (s), 128.70 (d), 129.85 (s), 129.91
(d), 131.95 (s), 132.29 (d), 133.15 (s), 133.22 (s), 141.95 (s); HRMS m/z (%) 301 (M**; CaoH|5NS,
80), 284 (89), 283 (100), 282 (41), 268 (48), 267 (40), 266 (15), 265 (13), 252 (8), 239 (11), 148.5
(12), 141 (19), 134 (22), 133.5 (36), 132.5 (16). Anal. Calcd for Co9H5NS: C, 79.70; H, 5.02; N, 4.65;
S, 10.64. Found: C, 79.84; H, 4.96; N, 4.62; S, 10.34. Chromatography of its hydrobromide (prepared
by precipitation with gaseous HBr in chloroform) on a Chiralpak AD column with a hexane—ethanol
mixture (1:1) showed 97.4% ee.
(S)-(+)-2-(N,N-Dimethylamino)-2’'-hydroxy- 1,1’ -binaphthyl (S)-(—)-13

To a stirred solution of 20% aqueous H2SO4 (1 mL) and 40% aqueous formaldehyde (1 mL; 12
mmol) in THF (3 mL) were simultaneously added, over a period of 5 min, a solution of (5)-(—)-7 (285
mg; 1.0 mmol; >99% ee) in THF (20 mL) and solid NaBH4 (279 mg; 7 mmol) and the mixture was
stirred at rt for 5 min and then poured into 2% aqueous KOH (200 mL). The product was extracted
with ethyl acetate (3%X20 mL), the combined extracts were dried with MgSQO4 and the solvent was
evaporated. The residue was chromatographed on silica gel (50 g) using toluene as eluent, to give pure
(5)-(—)-13 (263 mg; 84%): mp 194-195.5°C (toluene); []p>® ~32.6 (¢ 1; THF);?° chromatography
on a Chiralpak AD column with a hexane-ethanol mixture (60:40) at rt showed >99% ee; !H NMR
(300 MHz) 8 2.66 (s, 6 H, Me;N), 7.05-7.54 (m, 8 H, arom), 7.84-7.99 (m, 4 H, arom); !3C NMR
0 43.53 (q), 118.27 (d), 118.39 (s), 119.39 (d), 122.09 (s), 123.15 (d), 124.13 (d), 125.68 (d), 125.85
(d), 126.25 (d), 126.44 (d), 127.87 (d), 128.09 (d), 129.19 (s), 129.62 (d), 129.84 (d), 130.00 (s),
133.88 (s), 134.06 (s), 149.38 (s), 151.55 (s); IR v 1595 and 1619 (C=C arom), 3523 (OH) cm!;
HRMS m/z (%) 313 (M**, C22H9NO, 98), 312 (10), 282 (16), 281 (31), 269 (29), 268 (C20H20,
100), 267 (15), 239 (21), 100 (12), 157 (11), 127 (12), 119.5 (12). Anal. Calcd for Cy3H9NO: C,
84.31; H, 6.11; N, 4.47. Found: C, 84.27; H, 6.04; N, 4.41.
(S)-(—)-2-(N,N-Dimethylamino)-2’-[(N,N-dimethylthiocarbamoyl)oxy]-1,1'-binaphthy!l (S )-(— )-14

To a solution of ($)-(—)-13 (313 mg; 1 mmol; >99% ee) in dry DMF (5 mL) was added a 55%
suspension of NaH in mineral oil (50 mg; 1.15 mmol) under argon and the mixture was stirred at rt until
the evolution of hydrogen ceased (5 min). A solution of N,N-dimethylthiocarbamoyl chloride (136 mg;
1.1 mmol) in DMF (5 mL) was then added and the mixture was stirred at 65°C for 3 h under argon.
The cooled mixture was then poured into 2% aqueous KOH (100 mL) and the product was extracted
with ethyl acetate (3X20 mL). The combined extracts were dried with MgSO4 and the solvent was
evaporated. The residue was chromatographed on silica gel (50 g) using toluene as eluent, to give (S)-
(—)-14 (380 mg; 95%): mp 120-122°C (CH,Cly-heptane); [a]p>0 —8.8 (¢ 1; THF); chromatography
on a Chiralcel OF column with a hexane—ethanol mixture (9:1) at 40°C showed 98.2% ee; 'H NMR
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(300 MHz) & 2.53 (s, 6 H, Me;N-Ar), 2.57 and 3.18 (two s, 2%x3 H, MeaN-CSO), 7.13-7.49 (m, 7 H,
arom), 7.71-7.99 (mm, 5 H, arom); 13C NMR & 37.79 (q), 42.66 (q), 43.38 (2xq), 118.96 (d), 120.95
(s), 123.29 (d), 124.14 (d), 125.33 (d), 125.86 (d), 125.92 (d), 126.18 (d), 126.56 (d), 127.38 (d),
127.42 (d), 127.66 (s), 128.08 (d), 128.96 (s), 129.03 (d), 131.63 (s), 133.78 (s), 133.87 (s), 148.88
(s), 149.95 (s), 186.20 (s); IR v 1220 and 1530 (OCSNMe3), 1595 and 1619 (C=C arom); HRMS m/z
(%) 400 (M**, C25H24N-208S, 21), 328 (3), 312 (5), 296 (52), 295 (13), 294 (14), 281 (22), 268 (13),
239 (7), 88 (100), 72 (12). Anal. Calcd for C2sH24N20S: C, 74.97; H, 6.04; N, 6.99; S, 8.01. Found:
C,74.76; H, 5.81; N, 6.96; S, 7.85.
(S)-(—)-2-(N,N-Dimethylamino)-2'-[(N,N-dimethylcarbamoyl)mercapto]-1,1'-binaphthyl (S)-(—)-15

The thiocarbamate (S)-(—)-14 (400 mg; 1 mmol; 98.2% ee) was heated under argon in a sealed
tube at 240+ 1°C for 3 h. The tube was then cooled and the solid content was dissolved in toluene and
chromatographed on silica gel (50 g) with a toluene—ethyl acetate mixture (9:1) to give an inseparable
mixture of the starting material 14 and the cyclic thiocarbamate 17 (82 mg) as the lipophilic fraction.
The polar fraction contained the pure, oily (8)-(—)-15 (312 mg; 78%): {&]p —25 (c 0.4; CHCl3); IH
NMR (300 MHz) 8 2.48 (s, 6 H, Mea2N-Ar), 2.84 (bs, 6 H, MeaN-COS), 6.97-7.48 (m, 7 H, arom),
7.80-7.96 (m, 5 H, arom); IR v 1596 and 1919 (C=C arom), 1659 (C=0) cm™~!; HRMS m/z (%) 400
(M**, CasH2aN208, 32), 328 (8), 296 (C2oH N, 100), 295 (41), 294 (58), 284 (14), 283 (15), 282
(30), 281 (C21Hj5N, 61), 280 (12), 278 (10), 252 (8), 72 (96).
(S)-(—)-2-(N,N-Dimethylamino)-2'-mercapto-1,1’'-binaphthyl (S)-(—)-16

A solution of (5)-(—)-15 (400 mg; 1 mmol) and 100% hydrazine hydrate (14 mL) in ethanol (50 mL)
was refluxed for 3 h. The mixture was then evaporated, the residue was suspended in water, and the
product was extracted with ethyl acetate (3x20 mL). The combined extracts were dried with Na;SO4
and the solvent was evaporated. The residue was chromatographed on silica gel (50 g) using toluene
as eluent to afford pure product (279 mg; 85%): mp 124-126°C (toluene—petroleum ether 1:1); [«]p
—27 (c 0.4; THF); chromatography on a Chiralcel OS column with a hexane—ethanol mixture (80:20)
at 40°C showed 96.2% ee; before recrystallization the purity was 92.0% ee; 'H NMR (300 MHz)
8 2.59 (s, 6 H, MeaN), 3.40 (bs, 1 H, SH), 6.98 (ddd, 1 H, 3J=8.5, J=1.2, and *J=0.6 Hz, 5-H),
7.15 (ddd, 1 H, 3J=8.2, 4J=1.3, and 4J=0.7 Hz, 5'-H), 7.20 (ddd, 1 H, 3J=8.5, 3J=6.8, and *J=1.2
Hz, 6-H), 7.24 (ddd, 1 H, 3J=8.2, 3J=6.8, *J=1.3 Hz, 6'-H), 7.31 (ddd, 1 H, 3J=8.1 Hz, >J=6.8, and
47=1.4 Hz, 7-H), 7.39 (ddd, 1 H, 3J=8.1 Hz, 3J=6.8, and 4J=1.3 Hz, 7’-H), 7.50 (d, 1 H, 3J=9.0 Hz,
3-H), 7.55 (d, 1 H, 3/=8.6 Hz, 3’-H), 7.81 (dd, 3J=8.6 and *J=0.7 Hz, 4'-H), 7.83-7.87 (m, 2 H, 8-H
and 8'-H), 7.95 (dd, 1 H, 3J=9.0 and 4J=0.6 Hz, 4-H); 13C NMR § 43.35 (2xq), 119.74 (d), 123.76
(d), 124.24 (s), 124.71 (d), 124.89 (d), 126.10 (d), 126.60 (d), 126.63 (d), 127.22 (d), 127.93 (2xd),
128.05 (d), 129.63 (d), 129.68 (s), 131.34 (s), 131.68 (s), 133.07 (s), 133.58 (s), 133.85 (s), 149.87
(s); IR v 1595 and 1618 (C=C arom), 2567 (SH) cm™ ! HRMS m/z (%) 329 (M**, C22H9NS, 9),
294 (C2HigN, 19), 284 (CaoH12S, 100), 283 (77), 282 (30), 281 (18), 280 (7), 278 (6), 265 (6),
252 (8), 147.5 (7), 141 (9), 140.5 (7), 140 (8), 139.5 (7), 139 (7), 126 (6), 125 (6). Anal. Calcd for
C2H|9NS: C, 80.20; H, 5.81; N, 4.25; S, 9.73. Found: C, 80.47; H, 5.43; N, 4.25; §, 9.62.

Cyclic thiocarbamate (S)-(+)-17

Formed along with 15 (see above); the lipophilic fraction (82 mg) contained a mixture of 14 and
17, which were separated via a semi-preparative HPLC on a Magnum 9 column (Whatman), using a
petroleum ether—ether mixture (4:1) and RI detection. First eluted was the unreacted 14 (52 mg; 13%),
whereas the slower moving component was identified as the cyclic thiocarbamate (§)-(—)-17 (30 mg;
8% - based on the preparation of 15): amorphous solid, [a]p +114 (¢ 0.4, CHCI3); chromatography
on a Chiralpak AD column with a hexane-ethanol mixture (90:10) at 40°C showed 52.8% ee; IH
NMR (400 MHz) 8 3.37 (s, 3 H, MeN), 7.16-8.03 (m, 12 H, arom); 13C NMR 37.54 (q), 121.34 (d),
126.20 (d), 126.49 (d), 126.70 (d), 126.83 (d), 127.72 (d), 128.02 (d), 128.10 (d), 128.31 (d), 129.13
(d), 129.99 (d), 130.33 (2xd), 130.51 (s), 131.34 (s), 131.57 (s), 132.53 (s), 133.11 (s), 133.48 (s),
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134.86 (s), 142.23 (s), 170.63 (s); IR v 1596 and 1620 (C=C arom), 1655 (C=0) cm~!; HRMS m/z
(%) 341 (M**, C22H5NOS, 32), 296 (C20H0NS, 21), 284 (100), 283 (92), 282 (56), 281 (50), 265
(13), 264 (10), 239 (9), 148.5 (13), 148 (13), 142 (17), 141.5 (17), 141 (35).
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chloroformate. The two diastereoisomeric O,S-carbonates thus obtained exhibit distinctly different
pattern in the methyl region of the 'H NMR spectra. Significant for determining the ee are the
highest field methyl doublets, which were reported to appear at 0.30 (d, /=8.1 Hz) and 0.61 (d,
J= 6.9 Hz) ppm, respectively, for individual diastereoisomers.2’ With our sample, the latter signal
could be easily identified [at 0.59 (d, J=6.9 Hz) ppm], whereas the former doublet was essentially
missing. Other methyl doublets of our sample corresponded to those reported by De Lucchi for one
of the diastereoisomers (within ~0.02 ppm), while those for the other could not be detected. These
results indicate =98% ee for our sample. Moreover, the absolute configuration of 6 and the relative
configuration of the De Lucchi’s menthol-derived carbonates is thus unequivocally established.
Mutarotation has been observed with this sample of (S)-13 in CHCl5: starting at [ot]p +305 (c 2;
CHCl3), the solution reached an equilibrium in 2 days, and displayed []p +50. By contrast, little
changes were detected in THF over 24 h.
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